沒什麼組織、一些倏忽即逝有趣或不有趣的想法
Aider use case sharing
// XXX AI!
, // XXX AI?
/architect what is the main components of airflow, show the class diagram in mermaidjs with their responsibility and interaction relationship
/architect show the sequence diagram of how OpenAITriggerBatchOperator works in mermaidjs
/architect show the sequence diagram of how deferrable operator works in mermaidjs
pollm
according to the concepts about why we need llm translation, Aider, and the pollm
design (with added all the random-thoughts notes)# 將這句翻譯成中文 AI!
How TaskFlow API works in Airflow
Overview provided by Aider:
@task
def my_function():
pass
TaskDecoratorCollection.__call__
routes to python_task
task_decorator_factory
creates a _TaskDecorator
instanceresult = my_function()
_PythonDecoratedOperator
instanceXComArg
for dependency management# When DAG runs
ti = TaskInstance(task)
ti.execute(context)
Key Components:
TaskDecoratorCollection
: Entry point for @task
decorator_TaskDecorator
: Handles task creation and configuration_PythonDecoratedOperator
: Executes the actual Python functionXComArg
: Manages task dependencies and resultsThe architecture allows for:
Class Diagram:
classDiagram class TaskDecoratorCollection { +python: staticmethod +__call__: Any +__getattr__(name): TaskDecorator } class TaskDecorator { <> +__call__(python_callable): Task +__call__(**kwargs): Callable } class _TaskDecorator { +function: Callable +operator_class: type[BaseOperator] +multiple_outputs: bool +kwargs: dict +__call__(*args, **kwargs): XComArg +expand(**kwargs): XComArg +expand_kwargs(kwargs): XComArg +partial(**kwargs): _TaskDecorator +override(**kwargs): _TaskDecorator } class BaseOperator { +task_id: str +dag: DAG +execute(context): Any } class DecoratedOperator { +python_callable: Callable +op_kwargs: dict +op_args: list +execute(context): Any +_handle_output(return_value, context) } class PythonOperator { +execute(context): Any } class _PythonDecoratedOperator { +template_fields: Sequence[str] +custom_operator_name: str +__init__(python_callable, op_args, op_kwargs, **kwargs) } class XComArg { +operator: BaseOperator +key: str } TaskDecoratorCollection ..> TaskDecorator TaskDecorator ..> _TaskDecorator BaseOperator <|-- DecoratedOperator BaseOperator <|-- PythonOperator DecoratedOperator <|-- _PythonDecoratedOperator PythonOperator <|-- _PythonDecoratedOperator _TaskDecorator ..> _PythonDecoratedOperator _PythonDecoratedOperator ..> XComArg
Sequence Diagram:
sequenceDiagram participant User participant task as @task participant TaskDecFactory as task_decorator_factory participant TaskDecorator as _TaskDecorator participant PythonOp as _PythonDecoratedOperator participant XCom Note over User: Definition Time User->>task: @task(task_id="my_task") activate task task->>TaskDecFactory: task_decorator_factory(python_callable=None, **kwargs) TaskDecFactory->>TaskDecorator: create _TaskDecorator(multiple_outputs, operator_class, kwargs) TaskDecorator-->>User: return decorator deactivate task Note over User: Function Definition User->>TaskDecorator: decorator(python_function) activate TaskDecorator TaskDecorator-->>User: return _TaskDecorator instance deactivate TaskDecorator Note over User: Execution Time User->>TaskDecorator: decorated_function(*args, **kwargs) activate TaskDecorator TaskDecorator->>PythonOp: create operator(python_callable, op_args, op_kwargs) PythonOp->>PythonOp: prepare_for_execution() PythonOp->>XCom: create XComArg(operator) XCom-->>TaskDecorator: return XComArg TaskDecorator-->>User: return XComArg deactivate TaskDecorator Note over User: DAG Runtime User->>PythonOp: execute(context) activate PythonOp PythonOp->>PythonOp: _execute_task_with_callbacks(context) PythonOp->>PythonOp: python_callable(*op_args, **op_kwargs) PythonOp->>XCom: xcom_push(result) PythonOp-->>User: return result deactivate PythonOp